5,988 research outputs found

    Binary morphological shape-based interpolation applied to 3-D tooth reconstruction

    Get PDF
    In this paper we propose an interpolation algorithm using a mathematical morphology morphing approach. The aim of this algorithm is to reconstruct the nn-dimensional object from a group of (n-1)-dimensional sets representing sections of that object. The morphing transformation modifies pairs of consecutive sets such that they approach in shape and size. The interpolated set is achieved when the two consecutive sets are made idempotent by the morphing transformation. We prove the convergence of the morphological morphing. The entire object is modeled by successively interpolating a certain number of intermediary sets between each two consecutive given sets. We apply the interpolation algorithm for 3-D tooth reconstruction

    Measurements and Code Comparison of Wave Dispersion and Antenna Radiation Resisitance for Helicon Waves in a High Density Cylindrical Plasma Source

    Get PDF
    Helicon wave dispersion and radiation resistance measurements in a high density (ne ≈ 1019 - 1020m-3) and magnetic field (B < 0.2 T) cylindrical plasma source are compared to the results of a recently developed numerical plasma wave code [I. V. Kamensk

    The Past, Present, and Future of Multidimensional Scaling

    Get PDF
    Multidimensional scaling (MDS) has established itself as a standard tool for statisticians and applied researchers. Its success is due to its simple and easily interpretable representation of potentially complex structural data. These data are typically embedded into a 2-dimensional map, where the objects of interest (items, attributes, stimuli, respondents, etc.) correspond to points such that those that are near to each other are empirically similar, and those that are far apart are different. In this paper, we pay tribute to several important developers of MDS and give a subjective overview of milestones in MDS developments. We also discuss the present situation of MDS and give a brief outlook on its future

    Spectra and structural polynomials of graphs of relevance to the theory of molecular conduction

    Get PDF
    In chemistry and physics, distortivity of π-systems (stabilisation of bond-alternated structures) is an important factor in the calculation of geometric, energetic, and electronic properties of molecules via graph theoretical methods. We use the spectra of paths and cycles with alternating vertex and edge weights to obtain the eigenvalues and eigenvectors for a class of linear and cyclic ladders with alternating rung and backbone edge weights. We derive characteristic polynomials and other structural polynomials formed from the cofactors of the characteristic matrix for these graphs. We also obtain spectra and structural polynomials for ladders with flipped weights and/or Möbius topology. In all cases, the structural polynomials for the composite graphs are expressed in terms of products of polynomials for graphs of half order. This form of the expressions allows global deductions about the transmission spectra of molecular devices in the graph-theoretical theory of ballistic molecular conduction

    Near omni-conductors and insulators: Alternant hydrocarbons in the SSP model of ballistic conduction

    Get PDF
    Within the source-and-sink-potential model, a complete characterisation is obtained for the conduction behaviour of alternant π-conjugated hydrocarbons (conjugated hydrocarbons without odd cycles). In this model, an omni-conductor has a molecular graph that conducts at the Fermi level irrespective of the choice of connection vertices. Likewise, an omni-insulator is a molecular graph that fails to conduct for any choice of connections. We give a comprehensive classification of possible combinations of omni-conducting and omni-insulating behaviour for molecular graphs, ranked by nullity (number of non-bonding orbitals). Alternant hydrocarbons are those that have bipartite molecular graphs; they cannot be full omni-conductors or full omni-insulators but may conduct or insulate within well-defined subsets of vertices (unsaturated carbon centres). This leads to the definition of "near omni-conductors" and "near omni-insulators." Of 81 conceivable classes of conduction behaviour for alternants, only 14 are realisable. Of these, nine are realised by more than one chemical graph. For example, conduction of all Kekulean benzenoids (nanographenes) is described by just two classes. In particular, the catafused benzenoids (benzenoids in which no carbon atom belongs to three hexagons) conduct when connected to leads via one starred and one unstarred atom, and otherwise insulate, corresponding to conduction type CII in the near-omni classification scheme

    The Spatial String Tension, Thermal Phase Transition, and AdS/QCD

    Get PDF
    We present results of modeling the temperature dependence of the spatial string tension and thermal phase transition in a five-dimensional framework nowadays known as AdS/QCD. For temperatures close to the critical one we find a behaviour remarkably consistent with the lattice results.Comment: 8 pages, 4 figure

    Retinal metric: a stimulus distance measure derived from population neural responses

    Full text link
    The ability of the organism to distinguish between various stimuli is limited by the structure and noise in the population code of its sensory neurons. Here we infer a distance measure on the stimulus space directly from the recorded activity of 100 neurons in the salamander retina. In contrast to previously used measures of stimulus similarity, this "neural metric" tells us how distinguishable a pair of stimulus clips is to the retina, given the noise in the neural population response. We show that the retinal distance strongly deviates from Euclidean, or any static metric, yet has a simple structure: we identify the stimulus features that the neural population is jointly sensitive to, and show the SVM-like kernel function relating the stimulus and neural response spaces. We show that the non-Euclidean nature of the retinal distance has important consequences for neural decoding.Comment: 5 pages, 4 figures, to appear in Phys Rev Let

    Analysis of strain and stacking faults in single nanowires using Bragg coherent diffraction imaging

    Full text link
    Coherent diffraction imaging (CDI) on Bragg reflections is a promising technique for the study of three-dimensional (3D) composition and strain fields in nanostructures, which can be recovered directly from the coherent diffraction data recorded on single objects. In this article we report results obtained for single homogeneous and heterogeneous nanowires with a diameter smaller than 100 nm, for which we used CDI to retrieve information about deformation and faults existing in these wires. The article also discusses the influence of stacking faults, which can create artefacts during the reconstruction of the nanowire shape and deformation.Comment: 18 pages, 6 figures Submitted to New Journal of Physic

    Multidimensional Borg-Levinson Theorem

    Full text link
    We consider the inverse problem of the reconstruction of a Schr\"odinger operator on a unknown Riemannian manifold or a domain of Euclidean space. The data used is a part of the boundary Γ\Gamma and the eigenvalues corresponding to a set of impedances in the Robin boundary condition which vary on Γ\Gamma. The proof is based on the analysis of the behaviour of the eigenfunctions on the boundary as well as in perturbation theory of eigenvalues. This reduces the problem to an inverse boundary spectral problem solved by the boundary control method

    Peacock Bundles: Bundle Coloring for Graphs with Globality-Locality Trade-off

    Full text link
    Bundling of graph edges (node-to-node connections) is a common technique to enhance visibility of overall trends in the edge structure of a large graph layout, and a large variety of bundling algorithms have been proposed. However, with strong bundling, it becomes hard to identify origins and destinations of individual edges. We propose a solution: we optimize edge coloring to differentiate bundled edges. We quantify strength of bundling in a flexible pairwise fashion between edges, and among bundled edges, we quantify how dissimilar their colors should be by dissimilarity of their origins and destinations. We solve the resulting nonlinear optimization, which is also interpretable as a novel dimensionality reduction task. In large graphs the necessary compromise is whether to differentiate colors sharply between locally occurring strongly bundled edges ("local bundles"), or also between the weakly bundled edges occurring globally over the graph ("global bundles"); we allow a user-set global-local tradeoff. We call the technique "peacock bundles". Experiments show the coloring clearly enhances comprehensibility of graph layouts with edge bundling.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016
    corecore